Early Views of the Solar System

- General Greek Principles of Science
 - Nature can be understood
 - Not just randomly occurring phenomena
 - The diverse behavior observed in nature is held together in patterns that are orderly
 - Tendency to "Save the Phenomenon."
 - Anthropic principle; Goldilocks principle; Fine tuning
 - We're in the perfect place to observe everything.
- Euclid 600 BC
 - What he got right
 - Predicted solar eclipses
 - Moon shines due to reflected sunlight
 - Universe explainable by ordinary knowledge and reason
 - What he got wrong
 - Thought earth was a flat, rotating disk.
- Pythagoras 530 BC
 - First to suggest that Earth is a sphere.
 - One of the earliest advocates of a geocentric solar system
 - Earth at center, surrounded by system of concentric, rotating, transparent spheres.
 - Bodies attached to spheres in this order:
 - Moon, Mercury, Venus, Sun, Jupiter, Saturn, Stars.
- Philoaus 410 BC
 - Suggested Earth moves around a central fire
 - Not the sun
 - What were his new ideas?
- Aristotelian Universe 340 BC
 - In ancient times, philosophers argued from **first principles**, things that were accepted as obviously true.
 - First: The earth is round
 - Gave 4 reasons for roundness:
 - Symmetry: The sphere is a perfect shape.
 - Elements have their natural places: Earth's pieces fall naturally to Earth's center, pressing it into a spherical shape (circular reasoning).
 - Shadow: Lunar eclipse shadow (Earth's shadow on Moon) is always circular (what if Earth was a circular disk?)
 - North Star: Polaris gets higher in the sky the further north one goes.
 - o Second: the earth was located in the center of the cosmos
 - Third: the heavens were perfect, the earth, imperfect
 - All the cosmos traveled in perfect circles around us
 - Plato pushed this, his student, Aristotle adopted it

- He gave us the Aristotelian way of looking at the cosmos.
- Geocentric universe with all the heavenly objects moving in uniform circular motion
- Aristotelian concepts dominated ancient ideas about the universe for thousands of years
- Two major themes:
 - Our place in the cosmos (center)
 - The character of planetary motion (uniform circular motion)
- Aristarchus 240 BC
 - Rotation of earth on its own axis accounts for daily motion of stars
 - Earth revolves around Sun in a yearly orbit
 - He had it right before 200 BC. But his ideas failed to catch on.
- Eratosthenes 235 BC
 - o Calculated earth's radius to within about 5% accuracy
 - o Basic method
 - Measured shadow lengths at two different cities directly North-South of each other (Syene and Alexandria)
 - Calculated Earth's circumference and radius using geometry
 - Central angle = 7.5 degrees, 500 miles from A to S, times 48 = 24,000 miles;
 - Actual angel = 7.2 degrees, 500 mi X 50 = 25,000 miles.
- Ptolemy 120 AD
 - Great ancient astronomer of the 2nd century
 - Wanted to put it all this orbital motion into a mathematical model
 - Final effort to "Save the Phenomenon"
 - No significant changes for 1200 years.
- Why did they think we were in center anyway.
 - Popular worldview
 - The Sun *appears* to rise, transit the sky, and set
 - o It doesn't *feel* like we are moving
- Parallax
 - \circ The apparent motion of an object because of the motion of the observer.
 - If we were going around the sun, the background stars should change position.
 - They do, but not a lot since they are so far away.
- Planetary motion was difficult for the ancients to explain
 - Planets (wanderers) would suddenly backtrack
 - Called retrograde motion.
- Ptolemy tried to explain retrograde motion with epicycles on deferents
 - o all in an attempt to keep the Aristotelian (geocentric) view of the cosmos.
- Copernicus 1500 AD
 - o Polish monk; rediscovered the heliocentric model of the universe
 - But being for heliocentrism was being against Aristotle, and against the church.

- Finished in 1530, Copernicus wrote De Revolutionibus, but didn't give permission til he was dying.
- o Most important idea was putting the sun at the center
- With the sun at the center, the whole universe was simplified and elegant, and could explain things like retrograde motion
- We, moving faster on the inside, see other planets 'seem' to move backwards
- Copernicus insister in circular orbits, so he had to come with his own epicycles so it worked better (elliptical)
- His model was incorrect but his hypothesis with the sun in the center was correct
- But without a telescope, it couldn't be substantiated with evidence.
- And his circle obsession meant it couldn't predict things very well.
- It upset people because their whole universe changed, so it wasn't accepted for a long time.
- Tycho Brahe 1500s
 - Greatest pre-telescopic observational astronomer.
 - In 1572 he saw a supernova which he called a new star.
 - So the new star challenged Ptolemy and Aristotle
 - Brahe wrote a book on it called De Stella Nova
 - Danish king gave his place to build observatory.
 - Here Tycho shows off the latest mural quadrant with tools like there he observed the heavens and took over 20 years of data (without telescopes)
 - Earth was at the center, but all the other planets went around the sun.
- Kepler 1600s
 - Copernican; wrote a book *Mysterium Cosmographicum* which tried to prove that planets were solids with spacers
 - Discovered that Mars moves in an ellipse, not a circle and that it travels at different speeds.
 - Wrote about this in *The Harmony of the Worlds*
 - Led to his three fundamental laws of planetary motion
 - First law relies on the ellipse
 - An oval drawn around two points
 - Points called foci
 - Semimajor axis (a) = half the longest diameter
 - Eccentricity (e) is half the distance between the foci divided by the semimajor axis.
 - A circle is an ellipse with e = 0
 - Greater e \rightarrow more elliptical
 - States that all planets travel in ellipses with the sun at one focus.
 - Second law (Equal Areas-Equal Times)
 - States that planets sweep out equal areas in equal times
 - Translation: they go faster when closer to the sun because of gravity.

- Third Law states that the closer a planet is to the Sun the shorter its 'year.
- Equation T² = R³ (T = time; R = avg distance between the planet and the sun).
 Distance has to be expressed in AU; time has to be corresponding time for earth (1 year)
- Kepler never knew why his laws worked, just that they did.
- The Rudolphine Tables
 - Finished the tables in 1627
- Galileo Galilei
 - Telescope that pushed him over the top; it was a recent invention to examine the sky and gather evidence for the heliocentric view.
 - Discovered that the moon was not perfect; wasn't a perfect sphere
 - A lot more stars than people thought.
 - The Milky Way and the rest of the heavens is substantial, like the earth, not ethereal.
 - He saw four little 'stars' near Jupiter that were orbiting Jupiter. So not everything orbits either. If Jupiter can move and take its moons with it, so could earth.
 - The sun has spots (it's not perfect) and that it rotated.
 - He observed that Venus went through phases...it can only have phases if it goes around the sun.
- The birth of Modern Science
 - \circ $\;$ Nothing more than a logical way of observing, studying, or thinking about nature
 - \circ Scientific method was developed by Roger Bacon in 13 $^{\rm th}$ century
 - Cause and effect. 17th century, Francis Bacon
- Isaac Newton and Orbital Motion